Source code for xicsrt.optics._ShapeMeshCylinder

# -*- coding: utf-8 -*-
"""
.. Authors:
   Novimir Pablant <npablant@pppl.gov>

Define the :class:`ShapeMeshcylinder` class.
"""
import numpy as np
from scipy.spatial import Delaunay
from xicsrt.util import profiler
from xicsrt.tools.xicsrt_doc import dochelper
from xicsrt.tools import xicsrt_math as xm

from xicsrt.optics._ShapeMesh import ShapeMesh

[docs] @dochelper class ShapeMeshCylinder(ShapeMesh): """ A toroidal crystal implemented using a mesh-grid. This class meant to be used for three reasons: - A toroidal optic shape usable with large radii of curvature - As an example and template for how to implement a mesh-grid optic. - As a verification of the mesh-grid implementation. The analytical :class:`Shapecylinder` object will be much faster. **Programming Notes** This optic is built in local coordinates with the mesh surface normal generally in the local z = [0, 0, 1] direction and with config['trace_local'] = True. This is recommended because the mesh implementation performs triangulation and interpolation in the local x-y plane. """
[docs] def default_config(self): """ radius: float (1.0) The radius of curvature of the crystal. mesh_size : (float, float) ((11,11)) The number of mesh points in the x and y directions. mesh_coarse_size : (float, float) ((5,5)) The number of mesh points in the x and y directions. """ config = super().default_config() config['mesh_refine'] = True config['mesh_size'] = (11,11) config['mesh_coarse_size'] = (5,5) config['mesh_xsize'] = None config['mesh_ysize'] = None config['radius'] = 1.0 # It's good practice to always define meshes in local coordinates. config['trace_local'] = True return config
[docs] def setup(self): super().setup() self.log.debug('Yo mama was here.') # Calculate the angles that define the physical mesh size if (xsize := self.param['mesh_xsize']) is None: xsize = self.param['xsize'] if (ysize := self.param['mesh_ysize']) is None: ysize = self.param['ysize'] self.param['x_range'] = [-1*xsize/2, xsize/2] half_angle = np.arcsin(ysize/2/(self.param['radius'])) self.param['angle_range'] = [-1*half_angle, half_angle] # Generate the fine mesh. mesh_points, mesh_normals, mesh_faces = self.generate_mesh(self.param['mesh_size']) self.param['mesh_points'] = mesh_points self.param['mesh_normals'] = mesh_normals self.param['mesh_faces'] = mesh_faces # Generate the coarse mesh. mesh_points, mesh_normals, mesh_faces = self.generate_mesh(self.param['mesh_coarse_size']) self.param['mesh_coarse_points'] = mesh_points self.param['mesh_coarse_normals'] = mesh_normals self.param['mesh_coarse_faces'] = mesh_faces # Calculate the final width and height of the optic. mesh_local = self.param['mesh_points'] mesh_xsize = np.max(mesh_local[:,0])-np.min(mesh_local[:,0]) mesh_ysize = np.max(mesh_local[:,1])-np.min(mesh_local[:,1]) self.log.debug(f"Mesh xsize x ysize: {mesh_xsize:0.3f}x{mesh_ysize:0.3f}")
[docs] def cylinder(self, x, angle): """ Return a 3D surface coordinate given a distance and angle. """ C0 = np.array([0.0, 0.0, 0.0]) C0_zaxis = np.array([0.0, 0.0, 1.0]) C0_xaxis = np.array([1.0, 0.0, 0.0]) radius = self.param['radius'] x_vec = np.array([x, 0.0, 0.0]) O = C0 + radius * C0_zaxis + x_vec X_norm = xm.vector_rotate(C0_zaxis, C0_xaxis, angle) X = O - radius * X_norm return X, X_norm
[docs] def shape(self, a, b): return self.cylinder(a, b)
[docs] def calculate_mesh(self, a, b): profiler.start('calculate_mesh') num_a = len(a) num_b = len(b) aa, bb = np.meshgrid(a, b, indexing='ij') xx = np.empty((num_a, num_b)) yy = np.empty((num_a, num_b)) zz = np.empty((num_a, num_b)) normal_xx = np.empty((num_a, num_b)) normal_yy = np.empty((num_a, num_b)) normal_zz = np.empty((num_a, num_b)) # ------------------------------------------------ # Now calculate the xyz values at each grid point. for ii_a in range(num_a): for ii_b in range(num_b): a = aa[ii_a, ii_b] b = bb[ii_a, ii_b] xyz, norm = self.shape(a, b) xx[ii_a, ii_b] = xyz[0] yy[ii_a, ii_b] = xyz[1] zz[ii_a, ii_b] = xyz[2] normal_xx[ii_a, ii_b] = norm[0] normal_yy[ii_a, ii_b] = norm[1] normal_zz[ii_a, ii_b] = norm[2] profiler.stop('calculate_mesh') return xx, yy, zz, normal_xx, normal_yy, normal_zz
[docs] def generate_mesh(self, mesh_size=None): """ This method creates the meshgrid for the crystal """ profiler.start('generate_mesh') # -------------------------------- # Setup the basic grid parameters. a_range = self.param['x_range'] b_range = self.param['angle_range'] num_a = mesh_size[0] num_b = mesh_size[1] self.log.debug(f'num_a, num_b: {num_a}, {num_b}, total: {num_a*num_b}') a = np.linspace(a_range[0], a_range[1], num_a) b = np.linspace(b_range[0], b_range[1], num_b) xx, yy, zz, normal_xx, normal_yy, normal_zz = \ self.calculate_mesh(a, b) aa, bb = np.meshgrid(a, b, indexing='ij') angles_2d = np.stack((aa.flatten(), bb.flatten()), axis=0).T points = np.stack((xx.flatten(), yy.flatten(), zz.flatten())).T normals = np.stack((normal_xx.flatten(), normal_yy.flatten(), normal_zz.flatten())).T delaunay = Delaunay(angles_2d) faces = delaunay.simplices # It's also possible to triangulate using the x,y coordinates. # This is not recommended unless there is some specific need. # # delaunay = Delaunay(points[:, 0:2]) # faces = delaunay.simplices profiler.stop('generate_mesh') return points, normals, faces